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ABSTRACT: Wearable devices are increasingly used by a growing portion of the population to track health and illnesses. The 
data emerging from these devices can potentially transform health care. This requires an interoperability framework that 
enables the deployment of platforms, sensors, devices, and software applications within diverse health systems, aiming 
to facilitate innovation in preventing and treating cardiovascular disease. However, the current data ecosystem includes 
several noninteroperable systems that inhibit such objectives. The design of clinically meaningful systems for accessing 
and incorporating these data into clinical workflows requires strategies to ensure the quality of data and clinical content 
and patient and caregiver accessibility. This scientific statement aims to address the best practices, gaps, and challenges 
pertaining to data interoperability in this area, with considerations for (1) data integration and the scope of measures, (2) 
application of these data into clinical approaches/strategies, and (3) regulatory/ethical/legal issues.
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A rapidly growing portion of the population currently 
uses wearable devices to track health and illnesses. 
These devices span smartwatches, smart rings, and 

remote monitors of ECG and oximetry, among others. In 
2021, there were >100 million users globally of a single 
smartwatch, the Apple Watch, with >455 million wear-
ables shipped across the globe.1 In the United States, 
during 2019 to 2020, 29% of the US adult population 
reported using a wearable device for monitoring health 
and activity.2

Given these trends, a health care ecosystem of 
interoperable ambulatory medical devices may enable 
the integration of information from sensors, devices, and 
software applications (apps) to facilitate innovation in 
preventing and treating cardiovascular disease (CVD). 
Yet, the ambulatory medical technology ecosystem 

consists of systems that do not permit such goals, in 
particular because of challenges with interoperability 
and limited integration into existing clinical workflows 
(Figure). The proliferation of multiparameter, multiple-
function ambulatory devices with multiple discrete data 
streams can provide information on several physiological 
and pathophysiological elements that may enable bet-
ter patient care and outcomes.3,4 However, strategies 
for data quality assurance and the appropriateness of 
clinical content (also known as technical requirements), 
which would help guide the design of clinically accept-
able ambulatory monitoring systems, as well as the 
approach toward accessing and incorporating these data 
into clinical workflows, remain of limited efficacy.5,6

This scientific statement aims to address the best 
practices, gaps, and challenges pertaining to the need 
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for data interoperability in this area, with considerations 
for (1) data integration and the scope of measures, (2) 
application of these data into clinical approaches/strate-
gies, and (3) regulatory/ethical/legal issues.

DISEASE APPLICATIONS
Overview
Because several key physiological metrics are readily 
sensed and quantified, ambulatory monitoring of CVD is 
at an inflection point of growth, driven by a confluence of 

novel sensors, advanced analytics capable of processing 
massive amounts of data, and well-curated databases.7

Arrhythmia Detection and Monitoring
Arrhythmia monitoring is the best-established paradigm 
for novel ambulatory monitors, with wearable and hand-
held devices adding value to conventional Holter, event, 
patch, and implantable monitors.8

Atrial fibrillation (AF) is the most studied use case for 
detecting arrhythmias by novel devices. Two main sen-
sor classes are used to detect AF: photoplethysmogra-
phy and electrocardiographic recordings. A systematic 
review of smartphone photoplethysmography apps 
showed fair sensitivity, specificity, and negative predic-
tive value for AF detection but low positive predictive 
value.9 Electrocardiogram-based monitors are increas-
ingly preferred over photoplethysmography sensors for 
AF monitoring and have been used to assess AF burden 
after medical therapy or ablation10–12 or to guide antico-
agulation.12 Apps combining both sensors13 have shown 
reduced time to diagnosis in individuals suspected of AF.

Ambulatory monitors can detect other supraventricular 
or ventricular tachyarrhythmias or bradycardia8 and may 
facilitate risk stratification of patients for sudden cardiac 
death such as after myocardial infarction (MI) or those 
with hypertrophic cardiomyopathy by detection of com-
plex ventricular ectopy or ventricular tachycardias. Detec-
tion of the AF burden and high ventricular rates may also 
aid in diagnosing tachycardia-induced cardiomyopathy.

Clinical Vignette
A 62-year-old woman receives an alert from her smart-
watch indicating that she may have had an episode of 
atrial fibrillation. If she has granted permission for the 
health application of her smartwatch to upload data 
to her primary care professional’s patient portal, and 
if the smartwatch and health application support the 
same vocabulary and communication protocols used 
by the patient portal and electronic health record, the 
system might then interpret this information in the 
context of her overall health to determine whether she 
may be at increased risk of an embolic stroke. The 
system could prompt her primary care professional 
to consider prescribing anticoagulation. To enable 
this workflow, syntactic and semantic interoperabil-
ity between ambulatory and electronic health record 
data formats is key.

Figure. Overview of the approach to implementation of data derived from ambulatory monitoring devices.
EHR indicates electronic health record.

D
ow

nloaded from
 http://ahajournals.org by on June 20, 2024



Armoundas et al Data Interoperability for Monitoring of Cardiovascular Disease

Circ Genom Precis Med. 2024;17:e000095. DOI: 10.1161/HCG.0000000000000095� June 2024 296

Blood Pressure
Blood pressure measurement is a key measurable dis-
ease entity for which photoplethysmography-based sen-
sors are well suited. Photoplethysmography-based blood 
pressure assessment uses mapping of pulsatile periph-
eral arterial waveforms, which are calibrated to central 
(aortic) pressure with various algorithms and machine 
learning technologies.14,15 Nevertheless, the diagnostic 
accuracy16 of such sensors for blood pressure measure-
ments must be broadly defined, including demographic 
groups with a predilection for hypertension, those with 
comorbidities such as heart failure (HF) and stroke, and 
other vulnerable populations.17 Devices for ambulatory 
blood pressure measurement are described in the Spec-
trum of Physiological and Pathophysiological Measures: 
Wearable/Implantable Devices section.

Heart Failure
Remote sensors can be used to manage HF by quan-
tifying vital signs, weight, lung congestion (using tho-
racic impedance from implantable or wearable sensors), 
hemodynamics (from several implanted devices), and 
activity, with varying success.18 Recent studies show that 
direct pulmonary artery pressure monitoring with percu-
taneously implanted, leadless sensors may help reduce 
HF admission rates.18–20

Ischemic Heart Disease
Wearable sensors coupled with machine learning algo-
rithms may be able to precisely detect changes in the 
electrocardiographic ST segment related to acute isch-
emia, even in the presence of noise. In early-phase 
studies, 2-lead wearable devices using smartphone-
associated sensors at sequential sites have been shown 
to approximate the accuracy of the standard ECG, 
exhibiting 89% sensitivity, 84% specificity, 70% positive 
predictive value, and 95% negative predictive value for 
ST-segment–elevation MI compared with the 12-lead 
ECG.21 Such devices could expedite the management 
of patients suspected to have an acute coronary syn-
drome, particularly in remote areas.22 However, several 
issues remain, including the need to replicate these data 
when obtained by patients as opposed to expert clini-
cian users.

In the future, minimally invasive wearable devices 
using various biosensors (eg, optical, electrochemi-
cal, magnetic, and microRNA-based biosensors) offer 
promise. For example, electrochemical biosensors 
measuring troponin levels have shown high predictive 
performance in risk-stratifying patients with myocardial 
damage/tissue necrosis, which could provide the basis 
for a home-based care solution in the field of biomarker 
assays.23

Detecting and Monitoring Pulmonary Disease
Pulse oximetry monitors and similar wearable devices 
are increasingly used to detect normal and worsening 
pulmonary conditions. A recent systematic review of 12 
studies on wearable sensors that used statistical and 
machine learning algorithms to detect SARS-CoV2 
infection24 exhibited areas under the curve that ranged 
from 0.52 to 0.92 and accuracy for detecting presymp-
tomatic infection of 20% to 80%. Indices primarily asso-
ciated with COVID-19 diagnosis were increased heart 
rate, changes in skin temperature, and reduced activity, 
each with modest specificity alone. However, these early 
studies had limitations, including a lack of racial diver-
sity in recruitment,25 device-type variability, and a lack of 
standardized analyses.26 Another review of 28 studies 
aiming to detect deterioration in patients diagnosed with 
COVID-1927 found that oxygen saturation as measured 
by pulse oximetry (Spo2) <95% and respiratory rate >30 
breaths/min were the most common indicators, whereas 
respiratory rate, Spo2, heart rate, and home temperature 
were the strongest indicators of hospitalization.

Currently, evidence for using wearable oxygen satu-
ration monitors for patients diagnosed with COVID-19 
is modest,28 with conditional recommendations for using 
high-quality and reliable devices at home and integrating 
home oximetry data into the health care system.

Other Clinical Applications
Virtual care that incorporates novel sensors has promise 
beyond CVD. It has already improved health care access 
in rural and other underresourced areas and may even 
accelerate clinical trial recruitment and event classifica-
tion.29 The COVID-19 pandemic30–32 illustrated that the 
virtual care model can provide near–hospital-grade oxy-
gen saturation and electrocardiographic monitoring at 
home and thus reduce the need for urgent and inpatient 
care.33,34 Emerging apps include perioperative monitor-
ing at home to expedite discharge after surgery,35 track-
ing of cardiac rehabilitation, monitoring for diabetes36 
and metabolic disease,37 and cautious engagement of 
patients with innovations such as chatbots.38 Future work 
must identify patients and diseases best suited to this 
approach and then test practical workflows that minimize 
bias and ensure data privacy and integrity (Table 1).

SPECTRUM OF PHYSIOLOGICAL AND 
PATHOPHYSIOLOGICAL MEASURES: 
WEARABLE/IMPLANTABLE DEVICES
Overview
Emerging wearable systems focusing on validated 
pathophysiological indices and providing actionable data 
to guide care are expected to advance cardiovascular 
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practice. This process requires that each system is 
tested rigorously in well-characterized populations for 
hard clinical end points (Table 2), as well as actionable 
clinical surrogates such as tachycardia or alterations in 
blood pressure. The monitoring landscape is transitioning 
from a past in which all measurements were intermittent 
toward a future in which many will be continuous. How-
ever, the cut points for treating continuous metrics and 
whether these improve outcomes for any disease have 
yet to be determined in clinical trials and are beyond the 
scope of this document.

Physical Activity
Physical activity may inform care in those with or at risk 
for CVD and can be tracked by wearable devices more 
continuously and passively during daily activities than by 
6-minute walk distance in controlled settings and more 
objectively than by a subjective recall. Sensors of move-
ment (accelerometer), position (by GPS, gyroscope, 
barometer, and altimeter), or heart rate can be processed 
by algorithms to indicate physical activity type, activity 
level, and energy expenditure39; other biosignals and sur-
face electromyography (eg, smart socks) also hold prom-
ise.39 However, several challenges exist. There is a lack of 
standardization of sensing and analytics among systems 
and external validation.40 Clinical challenges include dif-
ficulties for clinicians in integrating patient-generated 
physical activity data into a care plan. In contrast, patient 
difficulties include cost, setup, and data sharing with the 
clinical team.

Prescription, referral and measurement standardiza-
tion of physical activity, is fundamental for patient care, 
and having physical activity assessment in electronic 
health records would be an important addition to our 
national surveillance systems. A multi-organizational 
effort led by the American Heart Association and Physi-
cal Activity Alliance has created a Physical Activity FHIR 
Implementation Guide41 (version 1 for Standardized 
Use) in Health Level 7 International, that is now in the 
public domain for implementation and uptake by health 
systems, qualified exercise professionals, digital health 
technology, medical fitness centers, and evidence-based 
programs. In July 2023, measures for physical activity 
assessment were incorporated into the US Core Data for 
Interoperability version 4,42 so they will be included into 
EHRs when version 4 of USCDI becomes part of federal 
regulation, in about 2–3 years. A reference implementa-
tion for the Implementation Guide will be developed by 
Fall 2024, and the USCDI physical activity assessment 
measures will be incorporated into the US Core. These 
developments will enhance the opportunity for digital 
exchange of patient-level data for physical activity pre-
scription, referral and assessment.

Table 1.  Disease Applications

Best practices Description 

1. �Use of wearable systems 
with published and  
actionable end points in  
clinical studies

Clinical studies of wearables  
include detection of AF to triage for  
anticoagulation or detection of elevated 
PA pressure to manage HF

2. �Make available the raw data, 
data splits, algorithm version, 
and training/test results

Replication of AI-based studies is  
difficult, particularly if the underlying 
hardware (sensors, software versions) 
differs. Publishing details may facilitate 
reproducibility, FDA review, and patient 
safety

Gaps and challenges Background

1. �Sensors and algorithms 
linked to clinical tasks need 
to be clearly defined as most 
or least appropriate

Wearable systems may not provide 
equally effective or actionable end points 
for all CVD end points. Strengths and 
limitations of each need to be defined.

2. �Calibration of sensors and  
algorithms is needed for 
each application

Sensor-algorithm pairs are optimized and 
then calibrated to a consensus (ground) 
truth per task, for example, detecting AF 
or sensing PA pressure or activity

3. �Standardization of sensor 
types and algorithmic  
approaches is needed

Comparisons between wearable systems 
are enabled for each clinical task. One 
approach is to develop sensor and data 
interoperability standards.

AF indicates atrial fibrillation; AI, artificial intelligence; CVD, cardiovascular 
disease; FDA, US Food and Drug Administration; HF, heart failure; and PA, pul-
monary artery.

Table 2.  Spectrum of Physiological and Pathophysiological 
Measures: Wearable/Implantable Devices

Best practices Description 

1. �Identification of physiological 
indices that are best mea-
sured by wearable systems

Physiological indices reflect several  
clinical signals, but not all are detected 
with equal accuracy by wearables, and 
not all wearables are equally effective at 
this measurement

2. �Establishment of clinical 
trials of device studies that 
define diagnostic accuracy

Wearable systems translate the  
detection of physiological indices to  
improve clinical care by requiring that  
result accuracy be prospectively tested 
in clinical workflows aiming to guide  
diagnosis or therapy

3. �Actionability of detected 
physiological indices

Wearable systems that enable automated 
and manual physiological measurements 
inform timely, accurate clinical decision-
making

Gaps and challenges Background

1. �Development and testing  
of wearable systems to  
ascertain undetected but 
clinically important  
physiological indices

Most wearable devices concentrate on 
readily measured indices such as the 
ECG or activity, but sensors that detect 
and measure novel metrics may also 
provide clinical value (eg, AI of the ECG 
to track serum potassium or data from 
wearables for several metabolic markers)

2. �Development of methods to 
digitize symptoms scores

Symptoms (eg, nausea, palpitations,  
dyspnea, chest symptoms) are a key  
factor in clinical evaluation but are 
underemphasized in digital medicine. 
Wearable system development should 
address this gap.

3. �Development of standards 
to serve as a foundation for 
comparing sensor systems

A framework of processes that enables 
systems to be independently evaluated 
and compared is needed and may  
be facilitated by the development of  
nonproprietary, reference datasets

AI indicates artificial intelligence. 
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Fall Detection
Wearable devices that use movement (eg, gyroscope, 
accelerometer), vision (surveillance cameras), or other 
sensors in the ambient environment are examples of 
technology aiming to detect falls.43 Current best prac-
tices for detecting falls combine sensors, typically 
placed on the waist, with wireless data transmission to 
an information processing center for analysis and alert-
ing.43 Such systems can detect falls with ≥94% accuracy, 
depending on technical specifications, although most 
studies have been performed in relatively young, healthy 
subjects. Emerging technologies such as smart textiles 
in garments are gaining interest because of their cost 
and practicality.43 Challenges include sensor noise (eg, 
motion artifact), poor connectivity, delays in transmitting 
alerts to key parties, and interoperability with current 
electronic health records (EHRs).43,44

Vital Sign Monitoring
Monitoring heart rate, blood pressure, blood oxygen, and 
core temperature can facilitate real-time clinical deci-
sions in hospitalized or ambulatory patients.45 Data may 
be transmitted continuously or when a designated event 
such as an abnormal heart rhythm occurs. Pulse oxim-
eters can provide feedback on oxygen saturation at home, 
but a recent study suggested that they did not improve 
outcomes without supplemental text messaging data.46,47 
Challenges include the risk of exacerbating disparities 
in care such as the relative lack of validation of pulse 
oximetry devices in patients with darker skin color,48 low-
bandwidth environments, and lack of hardware. Other 
challenges include data integrity and privacy. Although 
some vital signs such as temperature are included within 
the classification of EHR and thus are subject to existing 
regulations on data integrity and confidentiality,49 other 
clinical surrogates such as steps and activity level are not. 
It is likely that as digital databases and clinical evidence 
grow, there will be reconsideration of these historical clas-
sifications. Such reclassifications would ideally be based 
on evidence from clinical trials of actionable workflows.

Heart Rate and Rhythm
The Disease Applications section discussed mobile device 
detection of heart rate and rhythm to predict the risk of 
CVD. Although ECGs and photoplethysmographies can 
diagnose arrhythmias such as AF from a limited number 
of leads, the lack of validated algorithms limits their ability 
to accurately diagnose complex arrhythmias, MI, or other 
abnormalities.50 A framework that enables the external 
validation of such systems and data standards to enable 
competing systems to be compared requires data interop-
erability. Such an approach may also facilitate patient-led 
data review and verification after appropriate alerts.

Devices for Hemodynamic Measurement
Several devices can measure pulmonary artery and left 
atrial pressures. Pulmonary artery pressure devices have 
a Class IIB recommendation for patients with symp-
tomatic HF in the European Society of Cardiology and 
American College of Cardiology/American Heart Asso-
ciation51 guidelines, with American College of Cardiology/
American Heart Association guidelines further restricting 
devices to patients in New York Heart Association class III. 
Meta-analyses suggest that pressure monitors are more 
effective than impedance monitors in guiding therapy.19

In the COMPASS-HF trial (Chronicle Offers Manage-
ment to Patients with Advanced Signs and Symptoms of 
Heart Failure), patients randomized to a pressure sensor 
(mounted in the right ventricular outflow tract) did not 
have a lower incidence of HF events than those receiving 
standard care. Still, they experienced a longer time to first 
HF hospitalization (P<0.03).52 In the CHAMPION study 
(CardioMEMS HF System Post Approval Study) of 1114 
patients, another sensor guided care to reduce HF hospi-
talization by 28% at 18 months and was cost-effective.53

Because pulmonary artery pressure may not accu-
rately reflect left atrial pressures,54,55 devices are being 
developed that monitor left atrial pressures directly. 
LAPTOP-HF (LA Pressure Monitoring to Optimize 
Heart Failure Therapy)56 was terminated early because 
of complications relating to its transseptal placement. 
However, in already-enrolled patients, HeartPod was 
associated with a 41% reduction in HF hospitalizations 
at 12 months (P=0.005), and newer devices are being 
tested in this space. Other sensors can sense chest 
wall impedance using straps57 or respiratory rate using 
a chest patch.58 Ballistocardiography59 and seismocar-
diography mechanoacoustically record micromovements 
from cardiac motion at the body’s center of mass and 
the chest, respectively.60 Devices based on phonocar-
diography have recently been cleared by the US Food 
and Drug Administration (FDA) to assess murmurs61 and 
could potentially indicate filling pressures.

Devices for Measuring Sleep and Indices of 
Pulmonary Health
There is increasing awareness of the link between sleep-
disordered breathing and CVDs, including HF, AF, and 
mortality.62 Several devices are being tested to measure 
sleep-related physiology in the ambulatory setting to 
simplify diagnosis and to augment or potentially replace 
polysomnography in selected cases.63 Emerging devices 
use electrocardiographic and phonocardiographic sen-
sors, oxygen sensors that can detect desaturations,64 
photoplethysmography to detect abnormalities in pulse 
waveforms, and sound sensors to detect snoring, as 
well as electroencephalographic and electromyographic 
sensors.62
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DATA FORMAT
Overview
Analogous to human language, which is built on defined 
grammatical structures and vocabularies, data interoper-
ability requires information to be communicated in a struc-
ture recognized by both sender and receiver (known as 
syntactic interoperability) and requires that both sender 
and receiver understand the meaning of the information 
(known as semantic interoperability). If these conditions 
are met, the systems can transmit, receive, and process 
the information for further use. In this section, we outline 
commonly used tools for structuring and communicating 
health care information, introduce the most widely used 
collection of medical terms and concepts, and touch on 
the Open mHealth initiative dedicated to making mobile 
health data interoperable with the use of existing clinical 
vocabularies and communication protocols.

Syntactic Interoperability (Controlled 
Vocabularies)
Controlled vocabularies allow clinical content in EHRs to 
be represented in a standardized way that can be under-
stood by humans and captured, stored, and interpreted 
by computers. There are several widely used controlled 
vocabularies for medical terms and concepts. SNOMED 
CT (Systematized Nomenclature of Medicine Clinical 
Terms) is the single largest collection of medical terms, 
organized hierarchically to provide definitions, synonyms, 
and relationships and containing >350 000 concepts.65 
It includes clinical findings, symptoms, diagnoses, proce-
dures, body structures, organisms, substances, pharma-
ceuticals, devices, and specimens.

Each term in SNOMED CT is organized into 3 primary 
core components: concepts, descriptions, and relation-
ships.65 The fundamental building blocks are concept 
codes. These are clinical terms that are then assigned a 
numerical code. For example, the concept of AF has been 
assigned the code 49436004. Each concept is organized 
into an “is-a” hierarchy. For example, AF “is-an” arrhythmia.

Furthermore, each concept code has textual descrip-
tions divided into 2 groups: a fully specified name and 
synonyms. Each concept has only 1 fully specified name, 
but each may have many (or no) synonyms. A relation-
ship describes the association between 2 concepts. The 
relationship is used to define the meaning of a concept 
in a way that a computer can process.

Semantic Interoperability
Controlled vocabularies provide the building blocks for 
the interoperability structure, but a common organiza-
tional structure is needed to exchange and interpret the 
information. Health Level 7 International has developed 2 
of the most widely used structures: Structured Reports/

Consolidated-Clinical Document Architecture (C-CDA) 
and Fast Healthcare Interoperability Resources (FHIR).

Structured Reporting/C-CDA
A major effort toward developing standards for exchang-
ing data between hospital information systems has been 
the development of the Clinical Document Architecture, 
which is a standard that provides structure to electroni-
cally stored medical information by specifying the way 
that data elements are captured, stored, accessed, dis-
played, and transmitted. Clinical Document Architecture 
includes a common architecture, coding, semantic frame-
work, and an extensible markup language (XML)–based 
markup language that is human readable and machine 
interpretable. Along with Clinical Document Architectures, 
Implementation Guides were released by multiple stan-
dards development organizations such as Health Level 7 
International as case studies to demonstrate the use of 
Clinical Document Architectures in specific scenarios and 
to serve as document templates. Implementation guide 
consolidation has been achieved through the C-CDA 
effort led by the US Office of the National Coordinator 
for Health Information Technology. The C-CDA satisfies 
“meaningful use,” the minimum US standards for EHRs 
that eligible health care professionals and hospitals must 
meet in adopting and using EHR technology to qualify for 
Medicare and Medicaid incentive payments. Despite the 
acceptance of C-CDA as the primary standard for clini-
cal document exchange in the United States, challenges 
underlying the goals of meaningful use remain.66,67

Fast Healthcare Interoperability Resources
FHIR builds on the static C-CDA data organization 
standards by providing not only a clinical data structure 
but also a standard for the exchange, including send-
ing, transmission, delivery, and receipt of such clinical 
data, which are critical tasks when it comes to ambu-
latory monitoring data. Through FHIR, data are stored 
and accessed as individual elements rather than full 
documents, and these elements are described by FHIR 
resources. The FHIR data representation and bundling 
standards are based on JavaScript Object Notation, 
XML, and Resource Description Framework. The key 
solution that FHIR brings to interoperability is the app 
programming interface (API) that can perform the pack-
aging, transfer, and unbundling of the data. The FHIR 
API follows existing internet standards, using the HTTP-
based RESTful protocol (an API architectural style that 
uses HTTP requests to access and use data) for sharing 
information packets and OAuth (an authentication pro-
tocol that allows one to approve 1 app interacting with 
another on their behalf without giving away their pass-
word) for authentication (Substitutable Medical Applica-
tions and Reusable Technologies on FHIR). This makes 
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data sharing easy between various technologies, from 
legacy health systems to modern digital tools. Further-
more, FHIR APIs enable clinical data sharing and health 
data originating from other sources such as devices that 
can be used outside the clinical setting.

Observational Medical Outcomes Partnership 
Common Data Model
The Observational Medical Outcomes Partnership Com-
mon Data Model plays a crucial role in facilitating col-
laboration across systems using federated data models. 
It provides a standardized structure that allows different 
health care systems to harmonize their data and includes 
standardized vocabularies and terminologies such as 
SNOMED CT. Flags/variables in the Observational Medi-
cal Outcomes Partnership Common Data Model serve as 
essential metadata that identify the data source, assess 
data quality, enable data integration and comparison, 
facilitate data filtering, and support data auditing.

Open mHealth
Open mHealth is the leading mobile health data interop-
erability standard. The Open mHealth standard is indexed 
to existing clinical vocabularies (SNOMED for diagnoses, 
the Logical Observation Identifiers Names and Codes, a 
database and universal standard, for identifying medi-
cal laboratory observations) or SNOMED for laboratory 
tests and the normalized naming system for generic and 
branded medications and integrates with FHIR. Open 
mHealth enables both pulling ambulatory data into an 
EHR and harmonizing the data by using common data 
schemas, which support defining meaningful distinctions 
between data types (eg, a heart rate measurement from 
a smartwatch versus an electrocardiographic patch), and 
this metadata-supported context increases the clinical 
utility of the ambulatory data (Table 3).

Verification and Validation
Verification and validation are key aspects of quality man-
agement. The International Organization for Standard-
ization 9000 standards provide specific guidelines for 
verification and validation, which have been adapted by 
various industries, including the medical devices industry 
(International Organization for Standardization 13485). 
The software and hardware industries also have their 
own verification and validation processes outlined by the 
Institute of Electrical and Electronics Engineers standard 
(1012-2016), and the FDA describes verification and 
validation processes required for software and hardware 
products that are submitted for their approval.49,68 Gold-
sack et al69 recently developed the V3 Framework for 
applying these concepts directly to digital health technol-
ogies, also known as biometric monitoring technologies, 

in which the validation process is further divided into ana-
lytical validation and clinical validation, similar to the vali-
dation framework used for “wet lab” biomarkers following 
the BEST (Biomarkers, EndpointS, and other Tools) 
resource developed by the FDA–National Institutes of 
Health Biomarkers working group.70

INTEGRATION INTO EHR AND INTO 
PATIENT HEALTH REPOSITORIES
Overview
Integration of patient-generated health data (PGHD) into 
EHRs and personal health records is essential to lever-
aging these data for clinical care and quality improve-
ment. Although much progress has been made toward 
enabling PGHD integration, more work is needed to 
define best practices.

EHRs and Personal Health Records
The passage of the Health Information Technology for 
Economic and Clinical Health Act in 2009 enabled the 

Table 3.  Data Format

Best practices Description 

1. C-CDA A standard that satisfies “meaningful use”  
by providing structure to certain aspects of  
electronically stored medical information by 
specifying the way that data elements are 
captured, stored, accessed, displayed, and 
transmitted

2. FHIR Provides a clinical data structure but also  
provides a standard for the exchange, including 
sending, transmission, delivery, and receipt, of 
such clinical data

3. OMOP CDM A CDM for collaborating across systems  
using federated data models that provides  
a standardized data structure, promotes  
interoperability, facilitates vocabulary mapping, 
enables federated data analysis, supports  
collaborative research, and ensures data privacy 
and governance

4. Open mHealth Enables both pulling ambulatory data into an 
EHR and harmonizing the data by using common 
data and metadata schemas

Gaps and challenges Background

1. �Lack of syntactic 
interoperability

The ability of computer systems to communicate 
with one another because of the use of  
common data formats and common  
communication protocols

2. �Lack of semantic 
interoperability

The ability of computer systems to exchange 
data with unambiguous and common meaning 
among them

3. �Lack of data  
digestibility

The transformation of large data streams  
into information elements that are rapidly  
understandable and actionable by a human 
reader

C-CDA indicates consolidated clinical document architecture; EHR, electronic 
health record; FHIR: Fast Healthcare Interoperability Resources; and OMOP 
CDM, Observational Medical Outcomes Partnership Common Data Model.
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rapid adoption of EHRs across the United States.71 
Office-based adoption of EHRs has more than doubled 
since 2008, with 78% of practices having an EHR 
certified by the Office of the National Coordinator 
for Health Information Technology and 88% with any 
EHR.72 Personal health records are electronic apps in 
which the individual manages health information from 
diverse sources that can be securely shared with addi-
tional individuals or third parties in a secure environ-
ment.73 Patient portals are electronic personal health 
records directly tethered to institutional EHRs.74 Each 
of these apps has the potential to play an integral role 
in integrating PGHD into promoting and preserving car-
diovascular health.

Legislative Support for Data Sharing
Passed in 2016, the 21st Century Cures Act included 
specific policies to protect and promote the rights of 
patients to access their digital health data and to pro-
mote interoperability between institutions.75 Multiple 
stakeholders have been involved in promoting the adop-
tion of standards for the interoperability of digital health 
data, including Health Level 7 International FHIR76 and 
Open mHealth, as discussed previously in more detail.

Guidance on Data Standards and 
Interoperability
The US Office of the National Coordinator for Health 
Information Technology publishes and regularly updates 
the United States Core Data for Interoperability, with the 
most recent version published in July 2022. This guid-
ance specifies several classes of data relevant to the 
integration of PGHD into EHRs, personal health records, 
and patient portals, including patient demographics/
information to enable patient identification and matching 
and vital signs, which include several physiological mea-
surements related to cardiovascular health (eg, blood 
pressure, heart rate, body weight, and height). As noted, 
another key group is Open mHealth, which promotes the 
adoption of mobile health data interoperability standards. 
Since the passage of the Cures Act, the US Office of the 
National Coordinator for Health Information Technology 
has released additional guidance on standardized APIs 
for patient and population services, including details for 
authentication and authorization of sharing data among 
devices, apps, and institutions.6,77

Status of Data Integration
The integration of PGHD into each of these apps has 
been limited for various reasons. These include the need 
for more widely used data standards for storing and 
exchanging PGHD and the limited capability of health 
care institutions and EHR platforms to receive such 

digital health data (Table 4). A 2020 scoping review 
found PGHD integration into EHRs to be in the early 
stages and identified recurring concerns about resource 
requirements, efficient data delivery to the EHR, and 
workflows and dashboards for reviewing PGHD that 
would not contribute to alert fatigue and would enable 
efficient data review.7,78

REGULATORY
Overview
Data interoperability is fundamental to integrating ambu-
latory health technologies into clinical care. Regula-
tory agencies, in particular the US FDA, recognize the 
potential of digital health to transform health care and to 
establish new approaches to promote innovation in the 
field (Table 5).

Table 4.  Integration Into EHR and Patient Health 
Repositories

Best practices Description 

1. �Leverage USCDI  
standards and  
standardized FHIR APIs 
for data exchange and 
integration into EHRs and 
PHRs

With the passage of the Cures Act and 
continued evolution of USCDI standards 
and APIs, stakeholders need to leverage 
standards in data exchange and integration

Gaps and challenges Background

1. �Evaluate the readiness  
of EHRs, FHIR, and  
FHIR APIs for PGHD 
data exchange and  
presentation

The existing rigid interface of most EHRs  
is not amenable to the continuous nature 
and large scale of PGHD. Increased  
flexibility in the EHR structure could enable 
re-envisioning of how PGHD could be  
integrated effectively for health care.

The use of FHIR and FHIR APIs continues 
to evolve and expand. However, more 
formal evaluation of FHIR and FHIR APIs 
in diverse populations, including those 
from historically experiencing disadvantage 
groups and underresourced communities, 
is needed to ensure equitable and effective 
integration of PGHD into EHRs and PHRs.

2. �Develop best practices  
for presentation of  
PGHD to patients and 
integrate them with tools 
to promote and preserve 
cardiovascular health

The integration of PGHD into PHRs and 
other apps is relatively new; therefore,  
identification of best practices is needed, 
including how to leverage SMART on FHIR 
tools, for presenting PGHD to patients  
and building tools to promote and preserve 
cardiovascular health.

3. �presentation of PGHD  
to clinicians and  
population health  
stakeholders and integrate  
them with workflows  
aiming to improve and 
promote cardiovascular 
care

Research and development incorporating 
principles from design thinking experts  
on how to best present data to clinicians 
and population health stakeholders are 
needed, eg best practices for integrating 
dashboards and tools into clinical workflows 
and how to best leverage tools such as 
SMART on FHIR apps.

API indicates application programming interface; app, application; EHR, elec-
tronic health record; FDA, US Food and Drug Administration; FHIR, Fast Health-
care Interoperability Resources; PGHD, patient-generated health data; PHR, 
personal health record; SMART, Substitutable Medical Applications and Reusable 
Technologies; and USCDI, United States Core Data for Interoperability.
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FDA Definition of Digital Health
Digital health refers to the use of technology such as 
smartphones, computers, and the internet to improve 
health care.79 This can include EHRs, telemedicine, 
wearables, mobile health apps (mHealth), and health 
informatics, among other things. The goal of digital 
health is to make health care more efficient, accessible, 
and convenient for patients while improving the quality 
of care. This can include remote monitoring, virtual con-
sultations, and the ability to access patient data quickly 
and easily.

Role of the FDA
It is the mission of the FDA’s Center for Devices and 
Radiological Health to protect and promote public health 
by ensuring that patients and clinicians have timely access 
to safe, effective medical devices. It exercises this mission 
primarily by its authority over the regulatory approval pro-
cess. The new domain of digital health has allowed the 
agency to advance its mission by developing innovative 
pathways for the approval of digital health devices and 
thinking about medical devices in new, creative ways such 
as considering software as a medical device (SaMD).80,81

FDA Regulatory Approval Versus Clearance
The Center for Devices and Radiological Health regu-
lates medical devices through several pathways, which 
are beyond the scope of this overview. However, many 
digital health technologies receive the FDA label “cleared” 
versus “approved.” “Cleared” is assigned when a device is 
reviewed under the premarket notification [510(k)] path-
way, which is used for low- to moderate-risk devices that 
are similar to devices already on the market. This often 
results in devices being labeled as FDA cleared. Examples 
of the types of devices that have received FDA clearance 
through the 510(k) pathway include pulse oximeters, 
ultrasound imaging systems, and smartwatches capable 
of detecting AF. Premarket approval is used for high-risk 
devices. Manufacturers must submit a premarket approval 
application to the FDA demonstrating that the device is 
safe and effective through clinical trials and a more rigor-
ous review process. This results in the device being FDA 
approved. Examples of the types of devices that receive 
FDA approval include implantable pacemakers and defi-
brillators, deep-brain stimulators, and artificial heart valves. 
Many digital health devices such as smartwatches fall 
outside of the remit of the FDA, which classifies them as 
wellness devices and therefore does not regulate them. At 
the time of writing, several devices combine functionalities 
that are FDA regulated (eg, AF detection) and others that 
are not (eg, Spo2 measurement). For low- to moderate-risk 
medical devices with no valid predicate for establishing 
substantial equivalence, the FDA Modernization Act cre-
ated the de novo pathway. This may apply to innovative 
digital health tools. The de novo pathway provides a regu-
latory route for innovative devices that are relatively low 
risk without the burden of the premarket approval process. 
If the FDA determines that a device meets the criteria for 
de novo classification, it assigns the device a risk category 
(class I or II) and establishes special controls, if necessary, 
to ensure its safety and effectiveness.

FDA’s Approach to Interoperability
The ability of systems to share, interpret, and act on data 
is fundamental to the widespread adoption of digital 

Table 5.  Regulatory

Best practices Description 

1. �Engage with the  
FDA early in product  
development

Early engagement of the FDA’s CDRH  
can help stakeholders determine whether 
their product requires FDA review and how 
the regulatory approval process can be  
facilitated by adopting processes that reduce 
the barriers to approval (eg, by using data 
standards recognized by the agency)

2. �Digital Health Center of 
Excellence

The Digital Health Center of Excellence was 
created by the FDA’s CDRH to empower 
stakeholders to advance health care by  
fostering innovation in the digital health  
space by connecting innovators in order to 
accelerate digital health advancement, build 
partnerships, and share knowledge

3. �Recognized data  
standards

The FDA supports interoperability by  
collaborating with stakeholders including  
hospitals, health care providers,  
manufacturers, and standards development 
organizations such as Health Level 7 and  
others to promote the development of  
interoperability tools and their use in clinical 
care

4. �Understand the  
difference between  
FDA cleared and FDA  
approved

Medical devices that are FDA cleared have 
gone through the premarket notification 
[510(k)] process. Medical devices that  
are FDA approved have gone through the 
premarket approval process

Gaps and challenges Background

1. �CDRH’s regulatory 
powers are limited to  
device approval

Although the FDA can encourage  
stakeholders to develop products that  
use existing standards and make data  
interoperable, their regulatory power ultimately 
is limited by their mandate from Congress; 
for example, if a device is demonstrated to 
be safe and effective for its intended use, the 
agency cannot withhold approval and require 
it to be interoperable with other health IT 
systems.

2. �International  
digital health tools  
development and sales

Unlike most medical devices, digital health 
tools are sold over the counter and across  
international boundaries. This means that  
a US consumer must be aware of potential 
risks when purchasing a digital health  
device from a country that does not adhere  
to internationally accepted definitions of  
safety and efficacy as outlined by the  
International Medical Device Regulators 
Forum.

CDRH indicates Center for Devices and Radiological Health; FDA, US Food 
and Drug Administration; and IT, information technology.

D
ow

nloaded from
 http://ahajournals.org by on June 20, 2024



Armoundas et al Data Interoperability for Monitoring of Cardiovascular Disease

Circ Genom Precis Med. 2024;17:e000095. DOI: 10.1161/HCG.0000000000000095� June 2024 303

health technologies. Although the FDA does not have 
the authority to regulate data interoperability, it can 
encourage the creation and adoption of standards in 
powerful ways.

The FDA supports interoperability by collaborating 
with stakeholders, including hospitals, health care pro-
fessionals, manufacturers, and standards development 
organizations such as Health Level 7 International and 
others, to promote the development of interoperability 
tools and the use of these tools in clinical care.82 One 
important example is the 2017 document Design Consid-
erations and Pre-Market Submission Recommendations 
for Interoperable Medical Devices.3 This gives nonbinding 
guidance to manufacturers to design and develop safe 
and effective interoperable medical devices by outlining 
important design considerations and clarifying the agen-
cy’s recommendations for submitting interoperability- 
related information in premarket submissions.

Standards are the backbone of reliable, interoperable 
medical devices. In 2013, the FDA published an initial 
set of standards, and the agency continues to recognize 
and encourage the use of consensus standards that are 
relevant to the design and development of interoperable 
medical devices. The agency has a database listing its 
recognized standards.83

The FDA categorizes software into 3 groups84: (1) 
software that can perform a medical task on its own, 
without being part of a hardware medical device (known 
as SaMD); (2) software that is integral to a medical prod-
uct (software in a medical device); and (3) software that 
is used in the manufacturing or maintenance of a medi-
cal device.

Software as a Medical Device
Because digital health tools can be sold over interna-
tional boundaries, unlike traditional medical devices, 
regulatory agencies have recognized that they needed 
to develop a common framework and set of principles 
for digital health, particularly SaMD, that would enable 
all stakeholders and regulators to promote safe inno-
vation while protecting patient safety. The International 
Medical Device Regulators Forum is an international 
organization that strives to harmonize medical device 
regulations among its member countries. Established in 
2011 by the regulatory authorities of Australia, Canada, 
the European Union, Japan, and the United States, it 
develops regulatory guidelines and standards for medi-
cal devices. Its primary objective is to promote global 
regulatory convergence and cooperation, to improve 
the safety and effectiveness of medical devices, and to 
increase international trade in medical devices.

In 2013, the International Medical Device Regulators 
Forum formed the SaMD working group to develop guid-
ance supporting innovation and timely access to safe 
and effective SaMD. The working group, chaired by the 

FDA, agreed on 4 key components: definitions for SaMD, 
a framework for risk categorization, the quality manage-
ment system for SaMD, and a framework for clinical 
evaluation of SaMD.81

Digital Health Center of Excellence 
In September 2020, The Digital Health Center of Excel-
lence was created by the Center for Devices and Radio-
logical Health to empower stakeholders to advance 
health care by fostering innovation in the digital health 
space.85 The objectives are to connect innovators to 
accelerate digital health advancement, build partner-
ships, share knowledge, increase awareness, and drive 
synergy to advance best practices while simultaneously 
developing an innovative regulatory approach that is 
least burdensome, promotes efficiency, yet still meets 
the FDA standards for product safety and efficacy.

Two recent documents issued by the FDA will influ-
ence the adoption of digital health technologies for car-
diovascular health. First, in January 2021, the Center 
for Devices and Radiological Health published “Artificial 
Intelligence/Machine Learning (AI/ML) Software as 
a Medical Device Action Plan,” in which they summa-
rize feedback from key stakeholders on this topic and 
delineate 5 steps to facilitate innovation through artificial 
intelligence/machine learning–based SaMD.86 Second, 
in September 2022, the FDA issued guidance on clini-
cal decision support software, which outlines 4 criteria 
that lead to the categorization of clinical decision support 
software as a SaMD.87

CLINICAL WORKFLOWS AND 
OPERATIONAL STRATEGIES
Overview
A national survey has found that <10% of US clinicians 
reported that data from wearables and other ambulatory 
devices were integrated into the EHRs.88 This key barrier 
to the impact of these rich data on health care reflects 
limitations in relying on patients sharing this information 
during clinical encounters or clinicians obtaining it from 
patients. A systematic study of the integration process, 
with inference based on successful deployments, is drawn 
primarily from pilot assessments at a few select institu-
tions.89 A few key principles and strategies are outlined 
here and in the Figure. Examples of the potential work-
flows for integrating data from ambulatory monitoring to 
clinical care are presented in the Supplemental Figure.

Information Classification and Summarization
As described previously, novel devices offer a plethora 
of data streams. Broadly, these may represent (1) well-
recognized elements of a subject’s health record such 
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as measures of the heart rate, blood pressure, and  
single-lead ECGs and (2) newer data streams captured 
predominantly through novel ambulatory devices by pro-
viding measures of activity, sleep, or symptoms.

For quantitative measures that correspond to exist-
ing clinical elements in the EHR, additional measures 
obtained from ambulatory data streams can be added 
after the standardization of measurement units. How-
ever, for the more complex measures such as those 
focusing on unstructured data or qualitative measures, 
existing clinical workflows do not have an existing pro-
cess of integration that is readily accessible to clinicians. 
These may include patient narratives of their physical or 
mental health or reports from the device outputs that 
are available as images. Therefore, there is a need for 
direct access to these data streams and their summary 
measures that may provide the required information, with 
the prioritization of data streams dictated by evidence of 
an effect on patient outcomes.39 The summaries of the 
data streams would need to be synthesized to effectively 
communicate the health status of patients without over-
whelming clinicians; this would require dedicated devel-
opment in clinically appropriate and relevant information 
summarization strategies.

Focus on Established Clinical Relevance
A series of prospective evaluations of wearable-driven 
monitoring strategies have demonstrated improvements 
in detecting undiagnosed cardiac conditions.12,90 Several 
of these medical devices have been approved or are 
under consideration for approval by regulatory agen-
cies.91 The evaluation of data that are deemed suitable to 
be incorporated into clinical care must require the same 
level of evidence as any clinical assay, including techni-
cal reliability, valid and reproducible results, and clinical 
utility, defined as information that meaningfully alters 
the care and outcomes of patients.91 Whether the addi-
tional role of patient-led data sharing results in increased 
engagement with their health care professional requires 
evaluation as an independent outcome. The issues are 
amplified by the fact that these devices are increasingly 
used in individuals without any CVD or risk factors.2

Support for Clinical Practice Guidelines
The rapid evolution of ambulatory device technology and 
the growing body of evidence supporting their clinical 
potential have surpassed the lengthy process of develop-
ing clinical practice guidelines. Consequently, as patients 
and clinicians increasingly rely on data from wearable 
devices to inform their decisions, there remains a notable 
absence of comprehensive medical guidance for when 
and how to initiate clinical action based on ambulatory 
device data. This underscores the urgent requirement 
for regularly updated guidance that contextualizes the 

clinical significance of metrics derived from wearables 
and synthesizes the available evidence to support 
informed clinical decision-making.

Incentives and Disincentives
There is currently little incentive to incorporate ambula-
tory data into existing health care workflows, with clinical 
inertia often further hindering adoption of new technology. 
There are some notable exceptions such as during lock-
downs during the COVID-19 pandemic that prompted 
technology adoption on multiple fronts. However, given 
the voluminous data and increasing time required for data 
interpretation and entry into the EHR, there is an urgent 
need for professional societies to work with payers and 
regulatory agencies to define use and reimbursement cri-
teria. Furthermore, the accurate integration and security 
protection of the derived data of wearables and implant-
able devices in the EHR are likely to require additional 
effort and the hiring of additional information technology 
staff, which translates into additional health care over-
head cost. This should reflect the demonstrated benefit 
for each device and may inform the design of trials for 
each device. Ongoing efforts are focusing on developing 
new Common Procedural Terminology codes that accu-
rately reflect work performed by ambulatory devices and 
novel technologies and the interpretation of their data.92

The Centers for Medicare and Medicaid Services’ 
Medicare Access and CHIP Reauthorization Act of 2015 
and Merit Based Incentive Payments System regulations 
grant the Centers for Medicare and Medicaid Services 
authority to mandate EHR interoperability and provide 
a strategic lever to incentivize EHR manufacturers to 
implement standardized protocols for ambulatory device 
data collection, reporting, and data sharing. To excel in 
Merit Based Incentive Payments System performance 
measures and meet the Medicare Access and CHIP 
Reauthorization Act of 2015 requirements, EHR manu-
facturers would be compelled to develop systems that 
seamlessly integrate data from ambulatory devices, align-
ing with Centers for Medicare and Medicaid Services–
mandated standards. This ensures that EHR systems 
effectively capture and communicate information from 
wearables and other ambulatory devices, fostering data 
consistency and interoperability and ultimately enhanc-
ing the ability of health care professionals to access and 
use patient-generated data in a standardized manner for 
improved clinical decision-making and patient care.

Other concerns involve the legal implications of the 
omission of information available from these devices in 
clinical decision-making and whether using device-driven 
decision-making may cause harm. Moreover, the legal 
issues surrounding the response of clinicians receiv-
ing data from such devices that require urgent medical 
action, despite issues with the reliability and consistency 
of these data inputs, merit dedicated evaluation.
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Local Optimization
A critical issue that has received limited attention is 
the institution-specific application of technology and 
the limited availability and validity of such tools outside 
of major health systems. Therefore, although wearable-
driven care strategies may be effective at a specific 
institution, this does not guarantee that the strategy 
will generalize to a different institution. Consequently, 
there is likely a need for both proof of performance and 
continuous monitoring of the output of these ambula-
tory devices, given the required high bar of clinical care 
(Table 6).

Administrative Burden
Incorporating data from ambulatory monitoring provides 
significant benefits to patients, as noted previously, but 
even with optimal integration into the EHR, it requires 
significant oversight from clinicians to monitor for abnor-
malities, communicate with patients, and update treat-
ment strategies on the basis of the new information. For 
clinicians and health care systems to incorporate these 
technologies into clinical practice, it will be necessary for 
the administrative burden to be recognized by payers and 
compensated appropriately. This will be a major challenge 
for EHRs built on legacy systems without interoperability 
and adaptability and for smaller organizations that may 
not have the resources to permit the modernization of 
their EHR systems.

ISSUES PERTAINING TO PATIENT DATA
Ensuring Health Equity in Implementation
A potential concern arising from using information from 
wearables in decision-making is the socioeconomic bar-
riers to access and knowledge about the features of 
these devices. This may result in unintentionally creating 
or exacerbating disparities in health outcomes.93 There-
fore, if indications for these devices are identified that 
substantively alter the course of illness, there should be a 
mechanism to incorporate them as medical devices, with 
coverage as part of the overall health coverage system. 
Similarly, technological literacy must be incorporated into 
the larger health education of patients and our communi-
ties (Table 7).

Patient Rights/Ethics
The Health Insurance Portability and Accountability Act 
of 1996 and General Data Protection Regulation or the 
Data Protection Act of 2018 impose privacy and security 
standards on organizations that collect and use consumer 
data.94 Device developers, device manufacturers, and data 

Table 6.  Clinical Workflows and Operational Strategies

Best practices Description 

1. �Identification of 
clinically relevant 
measures

The measures chosen for inclusion in clinical 
workflows need to be validated and useful for 
clinical care

2. �Standardization of 
clinical response

The care of patients in response to information 
derived from ambulatory devices requires  
standardized approaches from clinical practice 
guidelines

3. �Reduction of clinical 
burden

A focus on standardization and summarization of 
data inputs can ensure appropriate processing 
by clinicians without the requirement of addition 
clinical resources

Gaps and challenges Background

1. �Lack of accepted 
management  
strategies

There is a paucity of both data and clinical 
guideline support to define how clinicians and 
health systems should respond to growing data 
from ambulatory devices

2. �Lack of clear  
incentives

Most clinical time and effort spent reviewing and 
evaluating data from these devices currently  
do not represent compensated effort and have 
unclear effect on patient outcomes

3. �Lack of local  
population  
performance

The algorithms that infer information from  
ambulatory devices, particularly those based on 
AI, are often proprietary without any transparency  
in their development and therefore have un-
known generalizability to new populations

AI indicates artificial intelligence. 
Table 7.  Issues Pertaining to Patient Data

Best practices Description 

1. �Use of common and 
local standards of 
data quality

Collection of contextual information is expected 
to aid in the understanding of the specific needs 
for the assessment of wearable data quality. The 
framework provided by Findability, Accessibility, 
Interoperability, and Reuse is a proposed start-
ing point.

2. �Promoting standards 
for data governance, 
documentation, and 
sharing in the spirit of 
open science

A federated system enables legal data control 
to remain within the domain from which the data 
originate, yet details pertaining to differences 
with respect to the repositories in which the 
data are held, the relationships in which data are 
exchanged, and the type of data that are shared 
are clearly elucidated

Gaps and challenges Background

1. �Interoperability  
standards are re-
quired to facilitate  
secure data exchange 
between devices and 
EHR systems

Data ownership by different stakeholders, rights, 
and governance from wearables need to be 
clearly defined. When manufacturers do not 
restrict access to the raw data, interoperability 
standards will enable data sharing and audit  
between clinical stakeholders.

2. �Evolution of  
regulatory  
boundaries

Health care wearable devices are developing 
rapidly, and the data security and privacy  
issues in their specific domains are complex.  
A regulatory framework for all stakeholders,  
including patients, needs to be established.

3. Health inequality There is potential for digital and technological 
divides because some participants may not be 
able to access or use wearable devices due to 
cost, innumeracy, and technical illiteracy

4. �Representation and 
fairness

The current use and features of wearables 
disproportionately target some members of the 
general population and exclude others, thus 
creating issues of a lack of representativeness 
and fairness

EHR indicates electronic health record.
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brokers are not subject to the Health Insurance Portability 
and Accountability Act of 1996 or General Data Protec-
tion Regulation requirements that may threaten security of 
consumer data.95 Innovation has outpaced commensurate 
regulation to ensure thorough consent and protections 
for data transmission. Contemporarily, patients’ rights are 
being prioritized and affirmed by law, and data should be 
anonymized to avoid identification if shared beyond the 
reasons for which they were collected, although how to 
achieve bona fide anonymization is not always clear.96

Cybersecurity
Wearable devices are prone to attack and require secure 
exchange of information.97 Lack of authentication, loca-
tion monitoring, and security holes are problems associ-
ated with these devices.98 The attributes of blockchain 
computing used in trading digital currency and the 
advanced analytics applied in financial markets could 
also be applied to health care. Storage and manage-
ment of health records on blockchain platforms protects 
patient data and allows patients to access their data on 
request, thus maintaining the privacy of patient data gen-
erated by wearable devices, enhancing interoperability of 
data storage systems, and improving medical information 
management between and across health care facilities.99 
However, although both infrastructural and algorithmic 
measures are needed, through interdisciplinary teams at 
every stage of design and implementation, no defense 
is 100% effective,100 and possible security vulnerabilities 
have to be continually assessed.

Data Ownership
The main challenge of data protection involves the safe-
guarding of an individual’s privacy and autonomy to con-
trol their data without limiting the benefits of their use. 
However, established mechanisms for individual control 
of data such as informed consent, a duty of confidential-
ity and deidentification, may not be sufficient and may 
interfere with positive uses.101 Another concern about the 
use of health data in research involves user-generated  
data obtained from digital devices and wearables or data 
supplied by users to social media, resulting from “lack 
of international boundaries when using the internet” and 
because the “online information industry has failed to 
self-regulate.”102 The growing economic importance of 
secondary use of data makes it increasingly seen as a 
powerful commodity and a major driver of transformation 
at a national level103 or at the market capitalization and 
revenue streams of data-intensive companies.104

Research
Dense data collection from patients using wearables 
may change how randomized clinical trials are designed 

and conducted, introducing fewer obstacles for patients 
to enroll (eg, remote enrollment) and increased patient 
outreach.105 Compared with traditional randomized clini-
cal trial data, the data infrastructure for sensor data are 
different and consist of multiple layers: raw unfiltered 
data, raw filtered data to eliminate invalid data in accor-
dance with their respected algorithms, and data derived 
from the secondary derivatives for interpretation.

There is evidence that cloud computing, in conjunc-
tion with fast-expanding technologies such as big data 
analytics, artificial intelligence, and the internet of medi-
cal things, improves efficiencies, resource availability, and 
interoperability and reduces costs.106–108

A low level of interoperability makes the integration 
of wearable data with other health data difficult.109 In 
addition, the integration of wearables into health services 
is currently challenging because the additional staff 
required to assist patients with the technology might 
need to be trained differently because software and 
hardware solutions are different between devices, and 
manufacturers may refuse to make their raw data acces-
sible to patients and institutions that own them. In turn, 
interoperability standards are also crucial for data stor-
age in order to integrate wearables into health services, 
which is currently costly.110

Ambulatory monitoring devices may reduce the 
need for clinic visits, which subsequently may reduce 
the time and logistical burden on patients. Furthermore, 
wearable technology is uniquely positioned to achieve 
one of the goals of digital health: expanding access 
to health services and thus enabling precision medi-
cine and improving health equity. However, large and 
extended wearable datasets usually target specific age, 
social, and economic groups while excluding important 
and large parts of the general population, resulting in 
biased and unrepresentative datasets.111 Thus, issues 
of fairness raise concerns about using and recom-
mending wearable technology for health in the general 
population.

Last, it is necessary to establish which is the right 
device for the research question of interest. This may 
involve a priori investigations of measure validation and 
the potential impact on risk factors and clinical outcomes.

Legal
Patient consent constitutes a mechanism to ensure that 
patients’ interests are protected.112 Regulations pro-
duced and supported by the US Office of the National 
Coordinator for Health Information Technology govern 
specified actors or entities.104 However, data produced 
by these wearable devices may not be subject to existing 
laws and regulations.101 The Trusted Exchange Frame-
work and Common Agreement was published to estab-
lish an infrastructure and governance model for data 
exchange across networks.109 Violating protections in 
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the General Data Protection Regulation/Data Protection 
Act of 2018, Health Insurance Portability and Account-
ability Act of 1996, or 21st Century Cures Act may result 
in serious consequences, including substantial penalties 
and potentially criminal liability.112

CONCLUSIONS
A functional interoperability framework for ambulatory 
monitoring devices is essential to facilitate a reliable and 
seamless interaction between different devices during 
health care delivery but remains elusive.

Because the primary objective of incorporating data 
streams from such devices into clinical settings is to 
improve care and outcomes, clinical needs and priorities 
are critical to defining the requirements and approach 
to ambulatory medical device interoperability. Therefore, 
clinical use cases with precise descriptions of work-
flows and human-device and device-device interac-
tions are expected to drive the development of robust 
interoperability standards. The impact of data streams 
that need to be prioritized in this framework would 
best be determined by the strength of the associated  
evidence-based health benefits. To achieve these aims, 
a consistent view of which data and functions of a medi-
cal device can safely contribute to health care improve-
ments in an interoperable system must be shared across 
stakeholders embodied in the system. This view should 
include the architectural framework for interactions 
between components of the ambulatory system, as well 
as a robust and transparent process for capturing and 

defining ambulatory device vocabularies and communi-
cation protocols.
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